NUKLEONIKA 2004, 49(3):101-106

STUDY OF ORGANOHALOGENS IN FOODSTUFFS AND ENVIRONMENTAL SAMPLES BY NEUTRON ACTIVATION ANALYSIS AND RELATED TECHNIQUES

Diandou Xu1, Zhifang Chai1,2, Hong Zhang1,2, Xueying Mao1, Hong Ouyang1, Huibin Sun2

1 Laboratory of Nuclear Analytical Techniques, Institute of High Energy Physics, Chinese Academy of Sciences, P. O. Box 918, Beijing 100039, China,
2 Institute of Nuclear Techniques, Shenzhen University, Shenzhen 500014, China


Pine needles and foodstuffs collected from Beijing, China, were analyzed by instrumental neutron activation analysis (INAA) combined with organic solvent extraction for total halogens, extractable organohalogens (EOX) and extractable persistent organohalogens (EPOX). The INAA detection limits are 50 ng, 8 ng and 3.5 ng for Cl, Br and I, respectively. The contents and distribution patterns of organohalogens in these samples are reported. EOCl accounted for 0.013-0.016% and 1.6-2.7% of the total chlorine in yogurt and apples, respectively, which suggested that chlorine in foodstuffs mainly existed as inorganic species and non-extractable organochlorines. EOCl contents in pine needles and foodstuffs were noticeably higher than those of EOBr and EOI. For pine needles, yogurt and apples, 1.6-34%, 23-58% and 29-35% of EOCl remained as extractable persistent organochlorine (EPOCl), respectively. Pine needle containing higher EOCl contents in chemical industrial and traffic hub areas indicated that chemical industries and exhaust emission from vehicle were the main sources of organochlorines in the Beijing’s air. The relative proportions of the known organochlorines (such as HCHs, DDTs, chlordanes, heptachlor, HCB and PCBs) to the total EOCl and EPOCl were 0.04-1.6% and 0.7-21.5%, respectively, which implied that the identity of species of a major portion of the EOCl and EPOCl measured in pine needles was unknown.